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Application of Modified Local Parametrization Method 
for the Constrained Multibody Dynamic Systems 

Dong-Chan, Lee*, Sang-Ho, Lee** and Chang Soo Han*** 
(Received October 29, 1996) 

This paper presents a corrector method for analyzing the dynamic behaviour of constrained 

multibody systems. For correcting the state variables, this method uses Lagrange-Newton 

method, which is a nonlinear programming technique. The Lagrange-Newton method uses the 

Lagrangian function that is a combined form of state variables with constraints, and the iteration 

formulation for convergence can be derived by the Newton-Raphson method. This algorithm 

does not update the Lagrange multipliers in the iteration formulation, for correcting the state 

variables, and is to project the state variables on the constraint manifold, in contrast to the 

previous local parametrization method. The validity of the algorithm and numerical solutions 

is verified through the convergence theorem denoting the convergence order of numerical 

solutions and the dynamic analysis of the lull vehicle 3D model. The numerical solutions are 
compared with the ADAMS solutions 
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N o m e n c l a t u r e  

x : State variable 

,a. : Lagrange multiplier 

f : Original objective function 

e : Constraint function 

L : Lagrangian function 

W : T w o  times partial differentiation of 

original objective function 

A : Transpose of Jacobian matrix of con- 

straint 

a :Const ra int  gradient vector (normal 

vector, a ( x )  U c ( x )  ) 
g : First partial differentiation of original 

objective function for state variable 

a,,8,~ : Arbitrary constant 

M : Mass matrix for multibody system 

,~ :Constra int  equation for multibody 
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system 

' Velocity constraint equation for 

multibody system 

~x : Jacobian matrix of q5 

T : Right hand side of acceleration con- 

straint equation for multibody system 

Q : External forces acting on the system 

:Sum of absolute value of each con- 

straint 

Superscripts 
* : Optimum point 

k : Iteration number 

m : Number of constraints 

Subscripts 
i : i-th constraint 

1. Introduction 

In order to understand the method to derive the 

equations of motion of the multibody systems, 

four choices of coordinates are discussed. The 

first choice is to use a set of independent coordi- 
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nates, which determine the position of bodies 

with the least possible number of state variables. 

A minimal set of second-order differential equa- 

tions, which is given in terms of system indepen- 

dent variables, is obtained in which the constraint 

conditions are absent. However, the rapidly grow- 

ing complexity in the derivation as the number of 

variables increases, and the high degree of  non- 

linea:rity of the equations of motion make these 

coordinates difficult to implement in a general 

purpose computer program. The second choice is 

that of relative coordinates, which define the 

orientation of each moving body with respect to 

either an on-moving body or another adjacent 

moving body. For an open tree structure, the 

number of relative coordinates is equal to the 

number of independent coordinates. For a closed 

loop system, constraint equations are imposed via 

Lagrange multipliers. The third choice is that of 

natural coordinates, which define a body using 

two or more moving coordinates rigidly attached 

to it. These moving coordinates are located prefer- 

ably at the joints of the mechanism, and can be 

shared by adjacent bodies. However, the presence 

of a fully populated mass matrix renders these 

coordinates less attractive in parallel computa- 

tion. The last choice is that of Cartesian coordi- 

nates, which define the position of each particle in 

each individual body in the system with respect to 

an inertial reference frame. If independent coordi- 

nates are used, the equations of motion are gener- 

ated in terms of system degrees of freedom expres- 

sed in differential equation form. But if the coor- 

dinates except the independent coordinate are 

used, the resulting equations for multibody sys- 

tems are given by a set of second-order differen- 

tial equations augmented with algebraic con- 

straint equations. 

For solving the differential algebraic equa- 

tions, many methods are presented. (]ear and 

Petzold(1982, 1984) presented the method aug- 

menting the second-order governing equilibrium 

equations with twice time-differentiated con- 

straint equations. However, numerical integration 

algorithms provide only an approximate solution. 

An approach to stabilize the constraint violations 

was proposed by Baumgarte(1972). But for some 

systems, this method suffers from i l l -condit ioning 

in the solution for Lagrange multipliers. A differ- 

ent approach to avoid constraint violations is to 

identify system dependent and independent vari- 

ables from the given constraint Jacobian matrix. 

These algorithms include: the generalized coordi- 

nate partitioning scheme(Wehage, R. A. and 

Haug, E. J., 1982), the singular value decomposi- 

t ion(Walton,  W. C. and Steeves, E. C., 1969: 

Singh, R. P., and Likins, P. W., 1985), the natural 

coordinates partitioning scheme (Garcia de Jalon, 

J. et al. 1987 ; Unda, J. et al. 1987), the null space 

scheme(Liang, C. G. et al. 1987; Ider, S. K. et al. 

1988; Amirouche, F. M. L. et al. 1!;)88). 

Recently, the solution methods introduce the 

opt imizat ion techniques. These a lgor i thms 

include: the augmented lagrangian  formulation 

(Bayo, E. and Avello, A.. 1993), the penalty 

formulation method(Kurdi la ,  A. J. and Narc- 

owich F. J., 1993) and the local parametrization 

method(Potra,  F. A., 1991). The augmented 

Lagrange formulation and penalty formulation 

have difficulty in finding the penalty paralneters. 

The local parametrization method is the optim- 

ization technique that displacements and veloc- 

ities integrated fi'om the accelerations are project- 

ed on the tangent plane of the constraint mani- 

fold, and thus satisfy the constraint conditions. 

This method introduces the Lagrange multipliers 

in analysis steps and the numerical solutions are 

controlled by updating the Lagrange multipliers. 

The augmented Lagrangian formulation and pen- 

alty formulation methods are indirect in attempt- 

ing to solve nonlinear constraint problems. A 

more direct and efficient approach is to iterate on 

the basis of certain approximations of the prob- 

lem functions, in particuhir by using linear 

approximations of the constraint functions. 

This paper presents the modified local par- 

ametrization method. The previous local par- 

ametrization method(Potra~ F. A., 1991: Lee, S. 

H., Bae, D. S., Han, C. S., and Suh, M. S., 1994) 

is to update the gagrange multipliers in the itera- 

tion formulations derived from the kagrangian 

functions, for correcting displacement, velocity 

and acceleration values. The Lagrangian func- 

tions are a combined form of state variables with 
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constraints. The presented algorithm in this paper 

does not update the Lagrange multiplier in the 

iteration tbrmulations, for correcting state vari- 

ables. Instead it projects the state variables on the 

constraint manifold and checks if the admissible 

displacements and velocities that satisfy the con- 

straint conditions exist. We can calculate the well 

conditioned accelerations from the general DAE 

(Differential Algebraic Equations). Thus, the 

number of the right hand side terms in the correc- 

tion equations of state variables which need to the 

computed decreases and even though the update 

of Lagrange multipliers is not in the iteration 

tbrmulations fb, correcting state variables, the 

numerical efficiency of solutions is not influen- 

ced. The validity of algorithm and unnecessity of 

the update of Lagrange multipliers are verified 

through the convergence theorem denoting the 

convergence order of numerical solutions. The 

numerical solutions of this algorithm are verified 

through the simulation of full vehicle 3D model 

and comparison with the numerical solutions of 

ADAMS. 

2. Verification of Algorithm 

2.1 Optimization scheme 
A more direct and efficient approach to solve 

nonlinear constraint problems is to iterate on the 

basis of some approximations to the problem f 

(x) and, e ( x ) ,  in particular by using linear 

approximations to the constraint function c ( x ) .  
The solving method of nonlinear constraint prob- 

lems is most simply explained as being Newton's 

method applied to find the stationary point of the 

Lagrangian function Eq. ( l ) ,  and hence might be 

referred to as the Lagrange .Newton method. 

L ( x , A )  - f ( x )  t ~ Z c ~ ( x ) ,  
i 

( i - - l ,  2,- ..... m) (I) 

Let's apply the stationary point condition to 

the equality constraint problem Eq. (l) and 

define l-7 as in Eq. (3) so that equation Eq. (2) is 

the stationary point condition at, x*, /1". 

7 L ( x * ,  A*) - 0  (2) 

where, (3) 

A Taylor series for 7 L  about x (k), A (k} gives 

7 L ( x  "~) ~-3x,/1(k)+3/1) [-TL (kl 

& l / '  

where, 7 L " ~ ) - U L ( x " %  A"~)). Neglecting 

higher order terms and setting the left-hand side 

to zero by virtue of Eq. (2) gives the iteration 

7 L J~3/1) ..... U L  (kl (5) 

This is solved to give corrections c3x and 3/1. 

Formulae for 7 L  and 7eL are readily obtained 

from Eq. (1), giving the system 

A(,~)r 0 j\3/1 ! ( c(F~ ) )(6) 

A ") is the transpose of Jacobian matrix of 

constraint evaluated at x ~), 

w ( k ) = u 2 f ( x  (k~) + "52,i /1,.(/~)72C,.(X(k)) (7) 

is the Hessian matrix 7 2 L ( x  (t~), .a(J')), and 

g"r f ( x  (k)) (8) 

is the Jacobian of for f ( x )  for x @). 
It is more convenient to write A"~)--d(h)+62 

and to solve the equivalent system 

k a  ''~ 0 J\k"~"/=: \e(")/ (9) 

to determine (3x (r and )~(J~' t~. Then x (r l) is given 

by 

. v "  ') :: x ' )  + 3x  (k) (10) 

An important feature of the method is that 

ultimately the convergence is of second order. If 

the second order sufficient conditions for the 

equality constraint problem hold at x*,/1", and if 

rank of A * = m ,  then the Lagrangian matrix 

is non singular. The second order convergence of 

iteration Eqs. (9) and (10) follows by virtue of 

the convergence theorem applied to the system of 

equations F L ( x , d )  0. This requires both x (h) 

and A "~) to be sufficiently close to x* and /1" tbr 

s o m e  ~,. 
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2.1.1 Convergence theorem 
If x m is sufficiently close to x*, and the La- 

grangian matrix 

[ W I, AI'>] 
A m '  0 J 

is non-s ingular ,  and if the second order sufficient 

condi t ions  hold at x*, ,a* with rank of A * - m ,  

then the Lagrange Newton iteration Eqs. (9) and 

(10) converges and it is of  second order. 

2.1.2 Proof  
Define errors h U ' - x * - x  ~ and z/u'>--A * 

- X hI. The Taylor  series of g*,  e*, and a* about  

X (k) 

c* - c "  + A t''' h (" + 0 (11 h<'<>ll ~) 
g* =gU~'-FVefU~'hU" ~ O/llh<h'II ~) 

a* = a<~' + ~'ee?'h"<' + o (llh'l l ~) 
( i - I , 2 , .  ..... , m) (12) 

are valid. It fol lows from Eq. (9) that h "+~1 and 
f ib+l )  satisfy the equations 

IV'"' A(k'~{hU't"~ 
+p~l, 0 J \ 2  <'<+'/ 

1~2<++iU'~c k lh '+  0 "-e, ' ' illh'~>ll:) 

=( Oillh<,<>li fl ) 
= ( ~176 <llh<">,l") (, 3) 

At x* and A*, the Lagrangian matrix is non 

- singular so for x u<~ and A u~ in some neighbour-  

hood of x* and ,~*. 

A<,:+,,/= o (llh<"ll ~) + o (llh<'<'l[fllA<">ll) 

There exists a constant  ~ > 0  such that 

m a x  (llh "~+ '>ll, [Iz/"~-'l l)< e l l h ' l l ' m a x  
/llh<'+>ll, IIJ"ll). (14) 

Thus, in a smaller neighbourhood, i.e., i f  I > &  

max(I lh' l l ,  [1~'11)::+~, then 

m a x  ill h"~' 1>11, ]IA"~+ l)l]) ~ all h"<q[ ~ a" m a x  
/ l lh 'H,  II,J'l l) .  

So the iteration converges and the order is seen 

to be quadrat ic  from Eq. (14). 

Let only x (n be in a neighbourhood of x*, so 

that A :~ has full rank, and let :fro be such that the 

Lagrangian matrix is non-s ingular .  Then IIA% 
IIh<'>ll and so as above, there exists a constant,  /?, 

such that 

maxil[hC=>ll, IlY'II) </~'llh<"l IIJ<l>ll 

I f  x m is sufficiently close to x* in that I[h+ll < 

1 x,3[[z/(,H, then max(llh,~)ll, l lSq l )< ,  ~1 and so 

X(2) /~(2) is in the ne ighbourhood fc)r which con- 

vergence occurs. 

2.2 Comparison of  convergence rate with 
the previous algorithm 

In order to compare the validity of numerical  

solut ions with the previous algori lhm that does 

update the Lagrange muhipliers,  this paper ch- 

ecks the convergence order. The right hand side of 

Eq. (13) shows that the con,~ergence order of the 

presented algorithm is quadratic.  The conver- 

gence order of previous algorithm can be derived 

from Eq. (6). It follows from Eq. (6) that h (k+n, 

~r satisfy the equations as follows; 

[ W u" A<h'][ h'k+n~ 
A Ik~' 0 jkA(,~,l/j 

+ ' ' -  0 (Ith"lr)] 
r + A<J~,'h.,  

where, 

g*  -f A*/~* (glk) +/fT~ f (xl,,}) . h~t,)) 
(AIkl ~ ~lT'c{*:~'h <'<1) "A* 

t O(llh'"'ll ~) 
g*,  A* and 2* of the right hand side in the 

above equat ion are g ' (x*) ,  A (x*) and /~ for the 

op t imum point x*. Thus g'*.+-A*a* is fTL(x*, 
,~*) and is zero by the stationary point  condit ion.  

The above equat ion is changed by using Eq. (12) 

as follows; 

[ w'"' h ' "  I 
A I*~l' 0 JLA<"<>I 

N ~ ? ~ r ~ < " - h  <" O / l l h ' l l  ~) ] 
- o ill h<"/I  ~) 

q'he convergence order off the local parametriza- 

t ion method that does not update the Lagrange 
muhipl iers is similar to that of the presented 
algorithm. Thus, it is shown that even though the 
Lagrange mult ipl iers are not updated, the numeri- 
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cal efficiency of solutions has no influence. 

3. Numerical Analysis 

Since the numerical solutions integrated by a 

mixed form of differential-algebraic equation, 

generally violate the constraint conditions, the 

numerical solutions must be corrected to displace- 

ments and velocities consistent with the constraint 

conditions. Thus, the following numerical analy- 

sis procedure is presented for correcting the state 

variables of multibody dynamic system. 

3.1 Pos i t ion  ana ly s i s  

Generally, the integrated generalized coordi- 

nates, x ~, do not satisfy the constraint conditions. 

The fact that x ~ does not satisfy the constraint 

conditions means the physical separation of 

mechanical system, and is ~he mathematical phe- 

nomenon different from the reality. In this paper, 

the initial guess x ~ is projected on the constraint 

manifold by the Lagrange-Newton method. 

The structure of the following constrained 

optimization problem is considered for the violat- 

ed generalized coordinates. 

1 , 0, r ,  x0) ,  Minimize  ~ t x - - x  ~ 1vl ( x -  x ~ R  ~ 

S u b j e c t  to  r  t ) - O ,  c/)r  ~ (15) 

Where, x ~ is a set of initial integrated displace- 

ments, x is a set of corrected displacements, M is 

t h e ( n x n )  mass matrix, and qS(x,t)  is a set of 

constraint equations. 

We can make the Lagrangian function by 

introducing the Lagrange multipliers as follows: 

L ( x ,  ,~po~) = 1_ ( x _  x o) r M ( x _ x  o) 

+ Cv/]~o ~ (16) 

By Eq  (9), the following equation is formulat- 

ed for correcting the displacement coordinates. 

(17) 

In the previous local parametrization, the cor- 

rection equation of position is as follows: 

0 J \SAvo~/ 

r (17-a) 

From the above equation, the term of (r 

<k~ is not concerned to the convergence order of pO8 

numerical solutions by from Eq. (I2) to Eq. (14). 

Thus, the abbreviated right hand side term is 

introduced in the right hand side of Eq. (17). 

Error value of constraint equations is calcu- 

lated by Eq. (18). 

/ n  

~- 21r (18) 
i = 1  

The generalized displacement coordinates are 

calculated by Eq. (10). 

3.2 Ve loc i ty  ana lys i s  

As the same method with the position analysis, 

the structure of the following conslrained oplim- 

ization problem is considered for the violated 

generalized velocities. 

1 ~M , Minimize  ~ ( . f c -  2 o) ( x -  x ~ x ~ R  '~ 

S u b j e c t  to  r  t) =0,  r  (19) 

Where, 2 o is a set of initial integrated veloc- 

ities, .v is a set of corrected velocities, M is the (n 

x n )  mass matrix, and r  is a set of 
velocity constraint equations. 

We can make the Lagrangian function by 

introducing the Lagrange multipliers as follows: 

L( .v,  x, Ave~) = 1  ( .~_  X0 ) rM ( . i :_  ~0 ) 

+ r ~e, (20) 

By Eq. (9), the following equation is formulated 

for controlling the velocity coordinates. 

(21) . , ~ , ~ + , / =  - / 
u �9 ",ttve~ - - - \  r 

In the previous local parametrizalion, the cor- 

rection equation of velocity is as follows: 

,, "t. "g! ve l ) - - \  r (2 l -a )  

But, from the above equation, the term of ( r  ~*),?. 

(royce is not. concerned to the convergence order of 

numerical solutions by (rom Eq. (12) to Eq. (14). 
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Thus the abbreviated right hand side term is Chassis 

introduced in the right hand side of Eq. (21) 

Error value of constraint equations is calcu- ~ ~ s  

,a,edb  122,o S,ro  
;z= .~ ~b, (22) 

= T 

(10)The generalized velocities are calculated by Eq. R a ~ ~ ~ T i a - R o d  

3.3 Acceleration analysis 
If the admissible displacements and velocities 

that satisfy the constraint conditions exist, we can 

calculate the well-conditioned accelerations from 

the general differential-algebraic equations. The 

general differential-algebraic equations are a 

combined form of the Lagrange multiplier form 

of the equations of motions and algebraic con- 

straint equations. That is as follows: 

qs~, O 

where Q is the external forces acting on the 

systems, and ), is defined from the twice differenti- 

ation of constraint equations. 

r (r 2r162 

4. Simulation 

4.1 Computer program 
In order to verify the efficiency of the numerical 

solutions by the presented algorithm. Fortran 

language is used tbr coding initial condition. 

inertial values, joint  type, and solving method. 

This program is based on the previous program 

and is to update the previous method(Lee, S. H., 

et al., 1994). And the integrator is DE which is 

made by Shampine and Gordon (Shampine, L. 

F., and Gordon, M. K., 1975) 

4.2 Vehicle modeling 
The validity of multibody dynamic analysis 

algorithm developed in this paper, is verified 

through the full vehicle model analyses and com- 

parison between the results of the presented algor- 

ithm and ADAMS. Joints in the suspension of the 

real vehicle system are interconnected through 

bushing, but in this analysis, bushing isn'l used. 

Chassis Knuckle 

27 

Tire 

Chassis 

Chass i s  

I u  
C h a s s i s  

S : Spherical Joint 

R : Revolute Joint 

U : Universal Joint 

T : Translational Joint 

Fig. 1 Front suspension. 

~ S 

I 

Rear Parallel  Link 

~ on t  Paral lel  Link 

Knuck le  
Ti re  

U / R a d i u s  Link 

C h a s s i s  

Fig. 2 Rear suspension. 

The overall vehicle model in this paper uses 

McPherson strut type in the front wheels, and 

multilink independent suspension in the rear 

wheels. The total degrees of freedom of vehicle is 

11 D.O.F ; 6 D.O.F in the chassis, vertical strokes, 

and steering system. 

McPherson strut suspension consists of lower 
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Table 1 The kinematic model of a vehicle model. 

Bodies 
n g c = l S •  6=108 

Eighteen bodies 

Constraints 

Translational joints 

Revolute joints 

Spherical joints 

Universal joints 

Distance constraints 

3 •  

4 • 5 -- 20 

14 •  

5 x 4 - 2 0  

1 

ncn = 98 

D . O . F = 1 0 8 - 9 8 =  l0 

Note) ngc : Number of generalized coordinates 

ncn : Number of Constraints 

control  arm, knuckle,  strut and tie rod as shown 

in Fig. 1. Rigid bodies are interconnected by 

joints  denoted in Fig. 1, where, the mark S 

denotes spherical joint ,  R denotes revolute joints 

T denotes translat ional  joint ,  and U denotes 

universal joint.  Mult i l ink independent  suspension 

consists of  upper control  arm, two lower parallel 

links in the lateral direction and radius link in the 

longitudinal  direction. Figure 2 shows an inter- 

mediate type between double  wishbone type and 

classical mult i l ink type. 

The kinematic model  of  a vehicle model is 

described at Table  t. 

4.3 J - turn  s imulat ion 

Figure 3 shows the ful l  vehicle model  with the 

previously described front and rear suspensions. 

This model is simulated by the proposed algorith- 

m in this paper and the results are compared with 

the A D A M S  solutions. 

The  riding simulat ion for evaluat ing the steer- 

ing performances is a step steering of  the full 

vehicle model. The vehicle runs at the 80 k m / h  

and the 45 ~ steering condi t ion  inputs as the steer- 

ing input dur ing 0.2 second fi-om 2.0 second. 

Before the step steering simulat ion,  the initial 

input positions use the value calculated from tile 

equi l ibr ium analysis. 

4.4 Simulat ion remark 

Figure 4 is the results of  s imulat ion for the step 

steering. (a), (b),  and (c) in the Fig. 4 denote the 

Fig', 3 Full vehicle model. 

3~ 

'~ _ _  program 

. . . .  A D d S  

0 5  I ~ 5  2 2 5  3 3 5  4 4 5  

4 

(a) Chassis roll angle 

program 

. . . .  ADAMS 

(b) Chassis yaw rate 

o l  

I 

0 o5 

o l  

o ~ 

i 

o 40 

(c) Chassis lateral acceleration 

Fig. 4 Simulation results. 
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roll angle, yaw rate, and lateral acceleration, 

respectively. The solid and dashed lines denote 

the ADAMS results and the results of the 

proposed algorithm. The results of the previous 

local parameter method are not prerented, 

because they are identical to the ones with the 

proposed algorithm. The overall trends are con- 

sistent with the results of ADAMS, but the small 

difference occurs, in the transient region, which is 

caused by the differernt tire models. Tire model 

used in this program has a bilinear property and 

tire model of ADAMS is a UA tire model. 

The number of arithmetic operation for addi- 

tional term of Eqs. (17-a) and (21-a) is de- 

scribed at Table 2. In Eqs. (17) and (21), the 

total operational number decreases by 21580, in 

position and velocity analyses of every each itera- 

tion, as shown in Table 2. 

5. Conclusion 

the iteration formulations. Thus, the right hand 

side term of the correcting equations is abbreviat- 

ed, in comparison with the previous local parame- 

ter method. Because the Lagrange multipliers is 

not updated in the iteration formulations, the 

computational burden in correcting the state 

variables can be reduced for each iteration in each 

position and velocity analyses. The convergence 

rate comparison between the abbreviated correc- 

tor algorithm and the previous algorithm is ver- 

ified through the convergence theorem denoting 

the convergence order of numerical solutions. By 

using these well-conditioned state wiriables, the 

general differential-algebraic equations can 

directly be used for computing the accelerations. 

To show the validity of this algorithm, the full 

vehicle model is simulated using the computer 

program and its results are compared with 

ADAMS results. 
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